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Abstract

In publications, presentations, and popular media, scientific results are predominantly 

communicated through graphs. But are these figures clear and honest, or misleading? We examine 

current practices in data visualization and discuss improvements, advocating design choices which 

reveal data rather than hide it.

Visualizations are vital tools for neuroscientists of every discipline, affording the ability to 

reveal relationships in large datasets and communicate information to a broad audience. But 

with the great power of graphs, one might say, comes great responsibility. Graphs can be 

fundamentally misleading about underlying data, and design choices can skew viewers’ 

perceptions leading them toward incorrect conclusions (Jones, 2006). For example, recent 

studies suggest that results rendered on aesthetically pleasing brain images are perceived as 

more persuasive and credible than identical information presented in other formats (Keehner 

et al., 2011; McCabe and Castel, 2008). Beyond the attractiveness of displays, readers may 

also be misled by the frequent errors that plague scientific figures (Cleveland, 1984) or a 

lack of sufficient information. In the words of statistician and graphic design expert Howard 

Wainer, effective data visualization must “remind us that the data being displayed do 

contain some uncertainty” and “characterize the size of that uncertainty as it pertains to the 

inferences we have in mind” (Wainer, 1996). It is our impression that such descriptions 

(along with more basic elements) are often lacking from published figures. In this 

NeuroView, we perform a survey of figures from leading neuroscience journals with an eye 

towards clarity and the portrayal of uncertainty. Based on survey results, we discuss 

methods to improve graphics (particularly for large datasets where visualization poses a 

challenge) and propose a set of figure guidelines in the form of a checklist (Table 1). We 

hope these recommendations, compiled from a number of excellent resources on data 
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visualization (Lane and Sándor, 2009; Tufte, 2001; Wainer, 1996) may be used by both 

internal and external reviewers to help evaluate figures for clarity and completeness.

Surveying the Field

We sampled 288 articles published in 2010 from 6 neuroscience journals (Frontiers in 

Systems Neuroscience, Human Brain Mapping, Journal of Neuroscience, Nature 

Neuroscience, NeuroImage, and Neuron) and examined the 1451 figures therein. We 

surveyed four basic features that were applicable to nearly all graphs and addressed 

Wainer’s points above. Survey questions were: 1) Is the dependent variable or quantity of 

interest labeled? 2) Is the scale of the dependent variable indicated? 3) Where applicable, is 

a measure of uncertainty displayed? 4) Is the type of uncertainty (e.g., standard error bars or 

confidence intervals) defined in the figure or accompanying legend? Examples of these 

graphical features are shown in Figure 1A for 2-dimensional (2D) and 3D datasets.

Survey results, shown in Figure 1B, overwhelmingly suggest that graphical displays become 

less informative as the dimensions and complexity of datasets increase. Compared to graphs 

of 2D data, 3D displays provide poorer descriptions of the outcome of interest and rarely 

provide an indication of uncertainty. Only 43% of 3D graphics label the dependent variable 

(meaning that if you were asked “what is being plotted here?” you would be able to answer 

less than half of the time) and only 20% portray the uncertainty of reported effects. Even for 

2D data, the proportion of graphs displaying uncertainty is lower when explanatory variables 

are continuous (and typically take on many values) than when they are categorical (and 

typically represent a few conditions; Fig. 1C). Of 2D figures that do indicate uncertainty, 

nearly 30% fail to define the type of uncertainty or variability being portrayed. Given the 

plurality of interpretations connoted by an error bar (e.g., a standard deviation [s.d.] of the 

sample, a standard error of the mean [s.e.m.], a range, a parametric confidence interval [CI] 

of the mean, a bootstrap CI, a Bayesian probability interval, a prediction interval, etc.), it is 

unclear how including it without a proper label would offer readers any further 

understanding of the data; in contrast, the poor labeling or omission of error bars has been 

shown to encourage misinterpretation (Cumming and Finch, 2005; Vaux, 2004; Wainer, 

1996).

A breakdown of results by journal (see supplementary analysis at mialab.mrn.org/datavis) 

further highlights the issue of data dimensionality in visualization: journals with lower 

proportions of 2D and 3D graphical features are those that primarily publish neuroimaging 

and systems-level findings, where results are often distilled from very large datasets using a 

hierarchy of models. That the so-called “curse of dimensionality” extends to the realm of 

data visualization is not surprising. Dependent variables are more difficult to label when 

they represent abstract parameter estimates rather than directly-measured quantities; 

uncertainty is more challenging to render when datasets require error surfaces rather than 

error bars. However, these results are undesirable. As datasets become more complex, 

displays should become increasingly informative, elucidating relationships that would be 

inaccessible from tables or summary statistics. In the next section, we provide examples of 

creating more informative displays for simple and complex datasets by making design 

choices that reveal data, rather than hide it.
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Show More, Hide Less

Consider a simple experiment where a researcher investigates the effect of different 

conditions on a single response variable. Having collected 50 samples of the response 

variable under each condition A, B, and C, how should the researcher visualize the data to 

best inform themselves and their audience of the results? Figure 2 provides three possible 

designs. In panel I, a bar plot displays the sample mean and s.e.m. under each condition. 

With no distributional information provided, the data-density is quite low and the same 

information could be provided in a single sentence, e.g., “mean response ± s.e.m for 

conditions A, B, and C were 4.9 ± 0.4, 5.0 ± 0.4, and 5.2 ± 0.4, respectively”. Panel II offers 

some improvement with box plots displaying the range and quartiles of each sample. This 

design reveals that response variables may take on both positive and negative values (hidden 

in panel I), and that condition B may be right-skewed. Distributional differences are better 

understood in panel III when using violin plots to display kernel density estimates 

(smoothed histograms) of each dataset (Hintze and Nelson, 1998). Violin plots make the 

skew in condition B more apparent and reveal that responses in condition C are bimodal 

(hidden in panels I and II). Although the additional distributional information in panel III 

does not change our initial inference that sample means are similar between conditions, we 

are certainly not likely to make the misinterpretation that condition has no effect on the 

response. Distributional differences also suggest that assumptions of the ANOVA (or other 

parametric models) may not be met, and that the mean may not be the most interesting 

quantity to investigate.

This example is not meant to imply that bar plots should always be avoided in favor of more 

complex designs. Bar plots have numerous merits: they are easy to generate, straightforward 

to comprehend, and can efficiently contrast a large number of conditions in a small space. 

They are particularly effective for displaying frequencies or proportions (as in Fig. 1), where 

binary data samples are transformed into a height that intuitively reflects the fraction of 

“successes”. Yet bar plots are also commonly used in scenarios where the distance from zero 

is not meaningful, and where distributional information would be of great benefit to readers. 

In roughly the same amount of space required by a bar plot, one can portray the full shape of 

distributions and overlay descriptive statistics, inferential statistics related to hypothesis 

testing, or even individual data points, creating a so-called “bean plot” (Kampstra, 2008). By 

increasing the amount of information available to the viewers, we allow them to assess the 

appropriateness of related statistical analyses and make their own inferences.

In Figure 3, we apply the guiding principle to “show more, hide less” to high-dimensional 

electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) datasets. 

We portray the results using a common design (panel I) and a modified design (panel II), 

where each change is arrived at by following the guidelines in Table 1.

Figure 3A presents data from an EEG visual flanker task. Subjects were asked to indicate 

the direction of a visual target which appeared shortly after the presentation of flanking 

distracters. For each participant, multi-channel EEG timeseries were decomposed using 

independent component analysis and a single component best matching the expected fronto-

central topography for a performance monitoring process was selected for further analysis 

Allen et al. Page 3

Neuron. Author manuscript; available in PMC 2015 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Eichele et al., 2010). Here, we ask how the extracted event-related potential (ERP) differs 

according to the subject’s response (i.e., correct or incorrect). Panel I provides a typical 

portrayal of results, where mean ERPs are displayed for each condition. As Table 1 

recommends, the axes are labeled, variable units are indicated, and experimental conditions 

are distinguished by line color with direct annotation on the plot. While this panel is clear, it 

is not complete: there is no portrayal of uncertainty. In panel II, we add 95% confidence 

bands around the average ERPs. The confidence bands are made slightly transparent to 

highlight overlap between conditions and to maintain the visual prominence of the means. 

Confidence intervals clarify that there is greater uncertainty in the error response than the 

correct response (since subjects make few errors), and that there is insufficient evidence to 

conclude a response difference after ~800 ms. In panel II we also add verbal descriptions 

and additional annotation to the graphic (Lane and Sándor, 2009; Tufte, 2001). Labels 

indicate that the timeline is relative to the presentation of the target stimulus, and specify our 

null and alternative hypotheses as well as the alpha level (Type I error rate) chosen to 

determine statistical significance. Integrating descriptions into the figure (rather than the 

legend) discourages misinterpretation and permits readers to understand the display more 

quickly. Of course, annotation must be used judiciously and should not overwhelm or 

detract from the data visualization itself.

Figure 3B portrays results from an auditory oddball event-related fMRI experiment. 

Participants responded to target tones presented within a series of standard tones and novel 

sounds. Blood oxygenation level-dependent (BOLD) timeseries at each brain voxel were 

regressed onto activation models for the target, novel, and standard stimuli (Kiehl et al., 

2001). Here, we ask what brain regions might be involved in the novelty processing of 

auditory stimuli and compare beta parameters between novel and standard conditions. Panel 

I presents voxelwise differences between beta coefficients using a widely reproduced 

design: functional-imaging results are thresholded based on statistical significance and 

overlaid on a high-resolution structural image. Following Table 1, the variable of interest is 

labeled, the colormap is sensible for the data and is mapped with symmetric endpoints, and 

annotation clearly indicates the directionality of the contrast (i.e., “Novel – Standard). This 

design provides excellent spatial localization for functional effects, but is not without 

problems. The display does not portray uncertainty and has a remarkably low data-ink ratio 

due to the prominent (non-data) structural image and sparsity of actual data (Habeck and 

Moeller, 2011). More crucially, the design encourages authors to hide results not passing a 

somewhat arbitrary statistical threshold. Given numerous correction methods and little 

consensus on the appropriate family-wise Type I error rate (Lieberman and Cunningham, 

2009) authors may arrive at a “convenient” threshold to reveal visually appealing and easily 

explained results. This design reduces a rich and complex dataset to little more than a 

dichotomous representation (i.e., “significant or not?”) that suffers from all the limitations of 

all-or-none hypothesis testing (Harlow et al., 1997) .

Rather than threshold results, we suggest a dual-coding approach to represent uncertainty 

(Hengl, 2003). As shown in panel II, differences in beta estimates are mapped to color hue, 

and associated paired t-statistics (providing a measure of uncertainty) are mapped to color 

transparency. Compared to panel I, no information is lost. Transparency is sufficient to 
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determine structural boundaries and statistical significance is indicated with contours. 

However substantial information is gained. The quality of the data is now apparent: large 

and consistent differences in betas are wholly localized to gray matter, while white matter 

and ventricular regions exhibit very small or very uncertain differences. In addition, isolated 

blobs of differential activation in panel I are now seen as the peaks of larger contiguous 

activations (often with bilateral homologues) that failed to meet significance criteria. The 

modified display also reveals regions in lateral parietal cortex, medial prefrontal cortex, and 

posterior cingulate cortex with reduced activation to novel stimuli compared to standard 

tones. These brain areas coincide with the so-called “default-mode network”, a system 

preferentially active when subjects engage in internal rather than external processes 

(Buckner et al., 2008). We hope to impress upon the reader the wealth of findings that can 

be revealed simply by un-hiding data. To encourage the use of this approach we provide 

sample MATLAB scripts for hue and transparency coding on our website (mialab.mrn.org/

datavis).

Along with increased annotation, panel II also displays the beta parameters for individual 

subjects, averaged over clusters of voxels passing significance (Fig. 3B1,B2). The 2D plots 

remove dependence on color-mapping (which is more difficult for viewers to decode than 

position along an axis (Cleveland and McGill, 1985)) and allow us to access the data in 

greater detail. Scatter plots indicate the beta estimates for each condition (rather than just the 

difference), reveal the degree of variability across subjects (and the absence of outliers), and 

validate our “paired” statistical approach, since beta values covary across conditions.

Concluding Remarks

A single figure may portray experimental data painstakingly collected over months or even 

years. Rather than use standard designs such as bar plots and thresholded maps that hide 

these data, we, as authors, peer-reviewers, and editors, can establish new standards for 

visualizations that reveal data and inform readers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Survey results
(A) Definitions and examples of graphical features for 2D (left) and 3D (right) datasets. (B) 

Mean proportion of 2D (white) and 3D (dark gray) figures displaying each feature. Error 

bars denote 95% non-parametric confidence intervals (10,000 resamples). (C) Mean 

proportion of 2D figures indicating uncertainty, separated by categorical (white) and 

continuous data (light gray). Left panel considers all figures; right panel considers only 

figures with both categorical and continuous data.
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Figure 2. Comparison of graphical designs
The same synthetic data is summarized in a bar plot (I), box plot (II), and violin plot (III). 

Box plots in (II) and (III) also show the mean ± s.e.m. and are drawn with a maximum 

whisker length of 1.5 times the interquartile range. Data points (n=50 for each condition) 

were sampled from a normal distribution (condition A), a generalized χ2 distribution with 2 

degrees of freedom (B), and an equal mixture of two normal distributions with different 

means (C).
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Figure 3. Conventional (I) and modified designs (II)
Captions describe panel II. (A) EEG flanker data. ERPs for error trials (red) and correct 

trials (blue) averaged over 10 subjects. Error bands are 95% non-parametric CIs (1000 

bootstraps). Asterisks indicate significantly different ERPs at P<0.001 (nonparametric 

randomization test, 10,000 randomizations, implicit correction for multiple comparisons). 

(B) FMRI auditory oddball data. Axial slices show the difference between novel and 

standard beta weights averaged over 28 subjects. Beta difference is mapped to color hue; t-

statistic magnitude is mapped to transparency. Contours denote significantly different betas 

at P<0.001 (two-tailed paired t-tests corrected with false discovery rate). (B1,B2) Scatter 

plots of standard versus novel betas for select regions. Beta weights are averaged over 

clusters of contiguous voxels passing significance (B1=2426 voxels; B2=1733 voxels). 

Dotted lines indicate y=x.
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Table 1

When evaluating a figure for clarity and completeness, consider the following questions.

Questions Examples/Suggestions

Design/Organization

 Is the display consistent with the 
model or hypothesis being tested?

• If data have been residualized or transformed for statistical analysis they should also be 
transformed in the graph.

• If data are paired between conditions, the graph should reveal the pairwise differences 
rather than differences at the group level.

• A 3D pie chart for 2D categorical data

• Extraneous colors that do not encode meaningful information

• Hiding, smoothing, or modifying data has been avoided

• Actual data points are emphasized over idealized models

 Are there "empty dimensions" in the 
display that could be removed?

 Does the display provide an honest 
and transparent portrayal of the
 data?

Axes

 Are axes scales defined as linear, log, 
or radial?

 Does each axis label describe the 
variable and its units?

• For quantities with units: "Time to peak (ms)"

• For arbitrary units (a.u.): "BOLD signal intensity (a.u.)"

• For unitless quantities: "Spearman rank correlation"

• The graphic should not be bounded at zero if the data can take on both positive and 
negative values.

• When x- and y-axes contrast the same variable under different conditions, the graphic 
should be square.

 Are axes limits appropriate for the 
data?

 Is the aspect ratio appropriate for the 
data?

Color mapping

 Is a color bar provided?

 Is the color map sensible for the data 
type?

• Use

when data is bipolar, and map zero to green

• Use

when data is unipolar, and map zero to black

• Use

when data is circular, and map −π, +π to red

 Does the color bar axis indicate the 
quantity, units, and scale?

Uncertainty

 Does the display indicate the 
uncertainty of estimated parameters?

 Is the type of error surface appropriate 
for the data?

• Standard deviations or prediction intervals are useful to describe variability in the 
population.

• Standard errors or confidence intervals are useful to make inferences about parameters 
estimated from a sample.

• Parametric confidence intervals should only be used if data meet the assumptions of 
the underlying model.

 Are the units of uncertainty defined?
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Questions Examples/Suggestions

• "Error bands indicate non-parametric 95% confidence intervals of the median"

Color

 Are contrasting colors consistent with 
a natural interpretation?

• Red for increases, blue for decreases

• Group A
 Can features be discriminated when 
printed in grayscale?

  Group B

 Has red/green contrast been avoided to accommodate common forms of colorblindness?

Annotation

Information necessary to understand the display should be shown on the figure itself. Details & definitions may be relegated to the legend.

 Are all symbols defined, preferably by 
directly labeling objects?

 Is the directionality of a contrast 
between conditions obvious?

• "Patients – Controls"

• "Each point represents the mean over 23 subjects"

• For a single test: “A repeated-measures ANOVA showed a significant effect of 
treatment (F[2, 10] = 12.53, P = 0.002)"

• For several tests: "Asterisks denote correlations different from zero (P < 0.01, two-
tailed t-tests, Bonferroni corrected for 10 tests)."

 Is the number of samples or 
independent experiments indicated?

 Are statistical procedures and criteria 
for significance described?

 Are uncommon abbreviations avoided 
or clearly defined?

 Are abbreviations consistent with 
those used in the text?

Neuron. Author manuscript; available in PMC 2015 May 12.


